点击免费下载:最新2000多门自考历年真题及答案汇总
自考PDF电子版教材,可以点我查看下载{自考电子版教材目录}
高中总复习生物化学知识点
生物 必修教材结论性语句总结1.生物体具有共同的物质基础和结构基础。2. 从结构上说,除病毒以外,生物体都是由细胞构成的。细胞是生物体的结构和功能的基本单位。3.新陈代谢是活细胞中全部的序的化学变化总称,是生物体进行一切生命活动的基础。4.生物体具应激性,因而能适应周围环境。5.生物体都有生长、发育和生殖的现象。6.生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。7.生物体都能适应一定的环境,也能影响环境。第一章 生命的物质基础8.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有的,这个事实说明生物界和非生物界具统一性。9.组成生物体的化学元素,在生物体内和在无机自然界中的含量相差很大,这个事实说明生物界与非生物界还具有差异性。10.各种生物体的一切生命活动,绝对不能离开水。11.糖类是构成生物体的重要成分,是细胞的主要能源物质,是生物体进行生命活动的主要能源物质。12.脂类包括脂肪、类脂和固醇等,这些物质普遍存在于生物体内。13.蛋白质是细胞中重要的有机化合物,一切生命活动都离不开蛋白质。14.核崾且磺猩锏囊糯镏剩杂谏锾宓囊糯湟旌偷鞍字实纳锖铣捎屑匾饔谩?15.组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,而只有按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。第二章 生命的基本单位——细胞16.活细胞中的各种代谢活动,都与细胞膜的结构和功能有密切关系。细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。17.细胞壁对植物细胞有支持和保护作用。18.细胞质基质是活细胞进行新陈代谢的主要场所,为新陈代谢的进行,提供所需要的物质和一定的环境条件。19.线粒体是活细胞进行有氧呼吸的主要场所。20.叶绿体是绿色植物叶肉细胞中进行光合作用的细胞器。21.内质网与蛋白质、脂类和糖类的合成有关,也是蛋白质等的运输通道。22.核糖体是细胞内合成为蛋白质的场所。23.细胞中的高尔基体与细胞分泌物的形成有关,主要是对蛋白质进行加工和转运;植物细胞分裂时,高尔基体与细胞壁的形成有关。24.染色质和染色体是细胞中同一种物质在不同时期的两种形态。25.细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。26.构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系、协调一致的,一个细胞是一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。27.细胞以分裂是方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。28.细胞有丝分裂的重要意义,是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。29.细胞分化是一种持久性的变化,它发生在生物体的整个生命进程中,但在胚胎时期达到最大限度。30.高度分化的植物细胞仍然具有发育成完整植株的能力,也就是保持着细胞全能性。第三章 生物的新陈代谢31.新陈代谢是生物最基本的特征,是生物与非生物的最本质的区别。32.酶是活细胞产生的一类具有生物催化作用的有机物,其中绝大多数酶是蛋白质,少数酶是RNA。33.酶的催化作用具有高效性和专一性;并且需要适宜的温度和pH值等条件。34.ATP是新陈代谢所需能量的直接来源。35.光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧的过程。光合作用释放的氧全部来自水。36.渗透作用的产生必须具备两个条件:一是具有一层半透膜,二是这层半透膜两侧的溶液具有浓度差。37.植物根的成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。38.糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。39.高等多细胞动物的体细胞只有通过内环境,才能与外界环境进行物质交换。40.正常机体在神经系统和体液的调节下,通过各个器官、系统的协调活动,共同维持内环境的相对稳定状态,叫稳态。稳态是机体进行正常生命活动的必要条件。41.对生物体来说,呼吸作用的生理意义表现在两个方面:一是为生物体的生命活动提供能量,二是为体内其它化合物的合成提供原料。第四章 生命活动的调节42.向光性实验发现:感受光刺激的部位在胚芽鞘尖端,而向光弯曲的部位在尖端下面的一段。43.生长素对植物生长的影响往往具有两重性。这与生长素的浓度高低和植物器官的种类等有关。一般来说,低浓度促进生长,高浓度抑制生长。44.在没有受粉的番茄雌蕊柱头上涂上一定浓度的生长素溶液可获得无子果实。45.植物的生长发育过程,不是受单一激素的调节,而是由多种激素相互协调、共同调节的。46.下丘脑是机体调节内分泌活动的枢纽。47.相关激素间具有协同作用和拮抗作用。48.神经系统调节动物体各种活动的基本方式是反射。反射活动的结构基础是反射弧。49.神经元受到刺激后能够产生兴奋并传导兴奋;兴奋在神经元与神经元之间是通过突触来传递的,神经元之间兴奋的传递只能是单方向的。50.在中枢神经系统中,调节人和高等动物生理活动的高级中枢是大脑皮层。51.动物建立后天性行为的主要方式是条件反射。52.判断和推理是动物后天性行为发展的最高级形式,是大脑皮层的功能活动,也是通过学习获得的。53.动物行为中,激素调节与神经调节是相互协调作用的,但神经调节仍处于主导的地位。54.动物行为是在神经系统、内分泌系统和运动器官共同协调下形成的。第五章 生物的生殖和发育55.有性生殖产生的后代具双亲的遗传特性,具有更大的生活能力和变异性,因此对生物的生存和进化具重要意义。56.营养生殖能使后代保持亲本的性状。57.减数分裂的结果是,新产生的生殖细胞中的染色体数目比原始的生殖细胞的减少了一半。58.减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两个染色体移向哪一极是随机的,则不同对的染色体间可进行自由组合。59.减数分裂过程中染色体数目的减半发生在减数第一次分裂中。60.一个精原细胞经过减数分裂,形成四个精细胞,精细胞再经过复杂的变化形成精子。61. 一个卵原细胞经过减数分裂,只形成一个卵细胞。62. 对于进行有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要的63. 对于进行有性生殖的生物来说,个体发育的起点是受精卵。64. 很多双子叶植物成熟种子中无胚乳,是因为在胚和胚乳发育的过程中胚乳被胚吸收,营养物质贮存在子叶里,供以后种子萌发时所需。65. 植物花芽的形成标志着生殖生长的开始。66.高等动物的个体发育,可以分为胚胎发育和胚后发育两个阶段。胚胎发育是指受精卵发育成为幼体。胚后发育是指幼体从卵膜孵化出来或从母体内生出来以后,发育成为性成熟的个体。第六章 遗传和变异67.DNA是使R型细菌产生稳定的遗传变化的物质,而噬菌体的各种性状也是通过DNA传递给后代的,这两个实验证明了DNA 是遗传物质。68.现代科学研究证明,遗传物质除DNA以外还有RNA。因为绝大多数生物的遗传物质是DNA,所以说DNA是主要的遗传物质。69.碱基对排列顺序的千变万化,构成了DNA分子的多样性,而碱基对的特定的排列顺序,又构成了每一个DNA分子的特异性。这从分子水平说明了生物体具有多样性和特异性的原因。70.遗传信息的传递是通过DNA分子的复制来完成的。71.DNA分子独特的双螺旋结构为复制提供了精确的模板;通过碱基互补配对,保证了复制能够准确地进行。72.子代与亲代在性状上相似,是由于子代获得了亲代复制的一份DNA的缘故。73.基因是有遗传效应的DNA片段,基因在染色体上呈直线排列,染色体是基因的载体。74.基因的表达是通过DNA控制蛋白质的合成来实现的。75.由于不同基因的脱氧核苷酸的排列顺序不同,因此,不同的基因含有不同的遗传信息。。76.DNA分子的脱氧核苷酸的排列顺序决定了信使RNA中核糖核苷酸的排列顺序,信使RNA中核糖核苷酸的排列顺序又决定了氨基酸的排列顺序,氨基酸的排列顺序最终决定了蛋白质的结构和功能的特异性,从而使生物体表现出各种遗传特性。77.生物的一切遗传性状都是受基因控制的。一些基因是通过控制酶的合成来控制代谢过程;基因控制性状的另一种情况,是通过控制蛋白质分子的结构来直接影响性状。78.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1。79.基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代。80.基因型是性状表现的内存因素,而表现型则是基因型的表现形式。81.基因自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的。在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合。82.基因的连锁和交换定律的实质是:在进行减数分裂形成配子时,位于同一条染色体上的不同基因,常常连在一起进入配子;在减数分裂形成四分体时,位于同源染色体上的等位基因有时会随着非姐妹染色单体的交换而发生交换,因而产生了基因的重组。83.生物的性别决定方式主要有两种:一种是XY型,另一种是ZW型。84.可遗传的变异有三种来源:基因突变,基因重组,染色体变异。85.基因突变在生物进化中具有重要意义。它是生物变异的根本来源,为生物进化提供了最初的原材料。86.通过有性生殖过程实现的基因重组,为生物变异提供了极其丰富的来源。这是形成生物多样性的重要原因之一,对于生物进化具有十分重要的意义。第七章 生物的进化87.生物进化的过程实质上就是种群基因频率发生变化的过程。88.以自然选择学说为核心的现代生物进化理论,其基本观点是:种群是生物进化的基本单位,生物进化的实质在于种群基因频率的改变。突变和基因重组、自然选择及隔离是物种形成过程的三个基本环节,通过它们的综合作用,种群产生分化,最终导致新物种的形成。第八章 生物与环境89.光对植物的生理和分布起着决定性的作用。90.生物的生存受到很多种生态因素的影响,这些生态因素共同构成了生物的生存环境。生物只有适应环境才能生存。91.保护色、警戒色和拟态等,都是生物在进化过程中,通过长期的自然选择而逐渐形成的适应性特征。92.适应的相对性是遗传物质的稳定性与环境条件的变化相互作用的结果。93.生物与环境之间是相互依赖、相互制约的,也是相互影响、相互作用的。生物与环境是一个不可分割的统一整体。94.在一定区域内的生物,同种的个体形成种群,不同的种群形成群落。种群的各种特征、种群数量的变化和生物群落的结构,都与环境中的各种生态因素有着密切的关系。95.在各种类型的生态系统中,生活着各种类型的生物群落。在不同的生态系统中,生物的种类和群落的结构都有差别。但是,各种类型的生态系统在结构和功能上都是统一的整体。96.生态系统中能量的源头是阳光。生产者固定的太阳能的总量便是流经这个生态系统的总能量。这些能量是沿着食物链逐级流动的。97.对一个生态系统来说,抵抗力稳定性与恢复力稳定性之间往往存在着相反的关系。高中生物复习归纳一、常现生物:1.细菌:原核类:具细胞结构,但细胞内无核膜和核仁的分化,也无复杂的细胞器,包括:细菌、放线菌、蓝细菌、支原体、衣原体、立克次氏体、螺旋体。①细菌:三册书中所涉及的所有细菌的种类:乳酸菌、硝化细菌;肺炎双球菌S型、R型;结核杆菌和麻风杆菌;根瘤菌、圆褐固氮菌;大肠杆菌、枯草杆菌、土壤农杆菌;苏云金芽孢杆菌;假单孢杆菌;甲基营养细菌、谷氨酸棒状杆菌、黄色短杆菌;链球菌;产甲烷杆菌等②放线菌:是主要的抗生素产生菌。它们产生链霉素、庆大霉素、红霉素、四环素、环丝氨酸、多氧霉素、环已酰胺、氯霉素和磷霉素等种类繁多的抗生素。繁殖方式为分生孢子繁殖。③衣原体:砂眼衣原体。2.病毒:病毒类:无细胞结构,主要由蛋白质和核酸组成,包括病毒和亚病毒① 动物病毒:RNA类DNA类②植物病毒:RNA类③微生物病毒:噬菌体。3.真核类:具有复杂的细胞器和成形的细胞核,包括:酵母菌、霉菌、蕈菌等真菌及单细胞藻类、原生动物等真核微生物。① 霉菌:可用于发酵上工业,广泛的用于生产酒精、柠檬酸、甘油、酶制剂、固醇、维生素等。在农业上可用于饲料发酵、生产植物生长素、杀虫农药、除草剂等。危害如可使食物霉变、产生毒素。常见霉菌主要有毛霉、根霉、曲霉、青霉、赤霉菌、白僵菌、脉胞菌、木霉等。4.微生物代谢类型:① 光能自养:光合细菌、蓝细菌紫硫细菌、绿硫细菌2H2S+CO2 [CH2O]+H2O+2S② 光能异养:以光为能源,以有机物为碳源与氢供体营光合生长。阳光细菌利用丙酮酸与乳酸用为唯一碳源光合生长。③ 化能自养:硫细菌、铁细菌、氢细菌、硝化细菌、产甲烷菌CO2+4H2 CH4+2H2O④ 化能异养:寄生、腐生细菌。⑤ 好氧细菌:硝化细菌、谷氨酸棒状杆菌、黄色短杆菌等⑥ 厌氧细菌:乳酸菌、破伤风杆菌等⑦ 中间类型:红螺菌、氢单胞菌、酵母菌⑧ 固氮细菌:共生固氮微生物、自生固氮微生物5.植物:C3和C4植物、阳生和阴生植物、豌豆、荠菜、玉米、水稻、洋葱、香蕉、普通小麦、八倍体小黑麦、无籽西瓜、无籽番茄、抗虫棉、豆科植物等。6.动物:人、果蝇、马、驴、骡子等。二、常用物质和试剂:1.常用物质:ATP、PEP、PEG、灭活的病毒、NADPH、过敏原、植物激素、生长素、生长素类似物、动物激素、丙酮酸、少数特殊状态的叶绿素a分子、质粒、限制性内切酶、DNA连接酶等。2.常用试剂:斐林试剂、苏丹Ⅲ、苏丹Ⅳ、双缩脲试剂、二苯胺、50%的酒精溶液、15%的盐酸、95%的酒精溶液、龙胆紫溶液、醋酸洋红、20%的肝脏、3%的过氧化氢、3.5%的氯化铁、3%的可溶性淀粉溶液、3%的蔗糖溶液、2%的新鲜淀粉酶溶液、5%的盐酸、5%的氢氧化钠、碘液、丙酮、层析液、二氧化硅、碳酸钙、0.3g/mL的蔗糖溶液、硝酸钾溶液、0.1g/mL的柠檬酸钠溶液、2mol/L和0.015mol/L的氯化钠溶液、95%的冷酒精溶液、75%的酒精溶液、胰蛋白酶、秋水仙素、氯化钙等。三、重要的名词、观点、结论重要的名词:1.应激性、细胞、自由水、结合水、肽键、多肽、真核细胞、原核细胞、自由扩散、协助扩散、主动运输、细胞的分化、细胞的癌变、细胞的衰老、致癌因子、有丝分裂、细胞周期、无丝分裂2.酶、ATP、高能磷酸化合物、高能磷酸键、渗透作用、原生质、原生质层、质壁分离、质壁分离复原、选择性吸收、光反应、暗反应、光合作用效率、有氧呼吸、无氧呼吸、内环境、稳态、脱氨基作用、氨基转换作用、化能合成作用3.向性运动、神经调节、体液调节、激素调节、顶端优势、反馈调节、协同作用、拮抗作用、反射、反射弧、非条件反射、条件反射、突触、高级神经中枢、先天性行为、后天性行为4.有性生殖、无性生殖、营养生殖、双受精、受精作用、减数分裂、性原细胞、初级性母细胞、次级性母细胞、染色体、染色单体、同源染色体、非同源染色体、四分体、染色体组、性染色体、常染色体、个体发育、胚的发育、胚乳的发育、顶细胞、基细胞、胚胎发育、胚后发育、卵裂、囊胚期、原肠胚、动物极、植物极5.DNA、RNA、碱基互补配对、半保留复制、基因、转录、翻译、显性性状、隐性性状、相对形状、基因型、表现型、等位基因、基因的分离定律、基因的自由组合定律、正交、反交、伴性遗传、交*遗传、基因突变、基因重组、染色体变异、杂交育种、人工诱变育种、单倍体育种、多倍体育种、花药离体培养、单基因遗传病、多基因遗传病、染色体异常遗传病、优生学6.自然选择学说、基因库、基因频率、隔离、地理隔离、生殖隔离7.生物圈、生态学、生态因素、互利共生、寄生、竞争、捕食、种群、种群密度、种群数量增长曲线、生物群落、生态系统、食物链、食物网、营养级、物质循环、能量流动、生态系统稳定性、生物多样性、生物圈的稳态、碳循环、氮循环、硫循环、生态农业8.人体的稳态、人体的平衡及调节、糖尿病、营养物质、营养、特异性免疫、免疫系统、抗原、抗体、抗原决定簇、体液免疫、细胞免疫、过敏反应、自身免疫病、免疫缺陷病9.生物固氮、共生固氮微生物、自生固氮微生物10.细胞核遗传、细胞质遗传、母系遗传、编码区、非编码区、RNA聚合酶结合位点、外显子、内含子、人类基因组计划、基因工程、质粒11.生物膜、细胞的生物膜系统、细胞工程、植物组织培养、植物体细胞杂交、细胞的全能性、愈伤组织、脱分化、再分化、动物细胞培养液、原代培养、传代培养、细胞株、细胞系、单克隆抗体12.微生物、菌落、衣壳、核衣壳、囊膜、刺突、碳源、氮源、生长因子、选择培养基、鉴别培养基、初级代谢产物、次级代谢产物、组成酶、诱导酶、微生物的生长曲线、接种、发酵罐、发酵工程、单细胞蛋白重要的观点、结论:1.生物体具有共同的物质基础和结构基础。细胞是一切动植物结构的基本单位。病毒没有细胞结构。细胞是生物体的结构和功能的基本单位。2.新陈代谢是生物体进行一切生命活动的基础,是生物最基本的特征,是生物与非生物的最3.生物遗传和变异的特征,使各物种既能基本上保持稳定,又能不断地进化。生物的遗传特性,使生物物种保持相对稳定。生物的变异特性,使生物物种能够产生新的性状,以致形成新的物种,向前进化发展。4.生物体具应激性,因而能适应周围环境。生物体都能适应一定的环境,也能影响环境。5.组成生物体的化学元素,在无机自然界都可以找到,没有一种化学元素是生物界所特有 的,这个事实说明生物界和非生物界具统一性。生物界与非生物界还具有差异性。组成生物体的化学元素和化合物是生物体生命活动的物质基础。6.糖类是细胞的主要能源物质,葡萄糖是细胞的重要能源物质。淀粉和糖元是植物、动物细胞内的储能物质。蛋白质是一切生命活动的体现者。 脂肪是生物体的储能物质。核酸是一切生物的遗传物质。7.组成生物体的任何一种化合物都不能够单独地完成某一种生命活动,只有这些化合物按照一定的方式有机地组织起来,才能表现出细胞和生物体的生命现象。细胞就是这些物质最基本的结构形式。8.细胞膜具一定的流动性这一结构特点,具选择透过性这一功能特性。9.细胞壁对植物细胞有支持和保护作用。 线粒体是活细胞进行有氧呼吸的主要场所。 叶绿体是绿色植物光合作用的场所。核糖体是细胞内将氨基酸合成为蛋白质的场所。 染色质和染色体是细胞中同一种物质在不同时期的两种形态。 细胞核是遗传物质储存和复制的场所,是细胞遗传特性和细胞代谢活动的控制中心。10.构成细胞的各部分结构并不是彼此孤立的,而是互相紧密联系、协调一致的,一个细胞是 一个有机的统一整体,细胞只有保持完整性,才能够正常地完成各项生命活动。11.原核细胞最主要的特点是没有由核膜包围的典型的细胞核。12.细胞以分裂的方式进行增殖,细胞增殖是生物体生长、发育、繁殖和遗传的基础。13.细胞有丝分裂的重要意义,是将亲代细胞的染色体经过复制以后,精确地平均分配到两个子细胞中去,因而在生物的亲代和子代间保持了遗传性状的稳定性,对生物的遗传具重要意义。14.高度分化的植物细胞仍然具有发育成完整植株的能力,也就是保持着细胞全能性。15.酶的催化作用具有高效性和专一性,需要适宜的温度和pH值等条件。16.ATP是新陈代谢所需要能量的直接来源。17.光合作用释放的氧全部来自水。一部分氨基酸和脂肪也是光合作用的直接产物。所以确切 地说,光合作用的产物是有机物和氧。 光能在叶绿体中的转换,包括三个步骤:光能转换成电能;电能转换成活跃的化学能;活跃的化学能转换成稳定的化学能。18.植物成熟区表皮细胞吸收矿质元素和渗透吸水是两个相对独立的过程。19.C4植物的叶片中,围绕着维管束的是呈“花环型”的两圈细胞:里面的一圈是维管束鞘细胞,外面的一圈是一部分叶肉细胞。20.高等的多细胞动物,它们的体细胞只有通过内环境,才能与外界环境进行物质交换。21.糖类、脂类和蛋白质之间是可以转化的,并且是有条件的、互相制约着的。22.植物生命活动调节的基本形式是激素调节。人和高等动物生命活动调节的基本形式包括神 经调节和体液调节,其中神经调节的作用处于主导地位。激素调节是体液调节的主要内容。23.向光性实验发现:感受光刺激的部位在胚芽鞘尖端,而向光弯曲的部位在尖端下面的一段,向光的一侧生长素分布的少,生长得慢;背光的一侧生长素分布的多,生长得快。 生长素对植物生长的影响往往具有两重性。这与生长素的浓度高低和植物器官的种类等有关。一般说,低浓度促进生长,高浓度抑制生长。 在没有受粉的番茄雌蕊柱头上涂一定浓度的生长素溶液可获得无籽果实。24.垂体除了分泌生长激素促进动物体的生长外,还能分泌促激素调节、管理其他内分泌腺的分泌活动。下丘脑是机体调节内分泌活动的枢纽。 通过反馈调节作用,血液中的激素经常维持在正常的相对稳定的水平。相关激素间具有协同作用和拮抗作用。25.动物神经活动的基本方式是反射,基本结构是反射弧。在中枢神经系统中,调节人和高等动物生理活动的高级中枢是大脑皮层。26.神经冲动在神经纤维上的传导是双向的。在神经元之间的传递是单方向的,只能从一个神 经元的轴突传递给另一个神经元的细胞体或树突,而不能向相反的方向传递。27.有性生殖产生的后代具双亲的遗传特性,具有更大的生活能力和变异性,因此对生物的 生存和进化具重要意义。 营养生殖能使后代保持亲本的性状。28.减数分裂的结果是,产生的生殖细胞中的染色体数目比精原细胞减少了一半。减数分裂过程中染色体数目的减半发生在减数第一次分裂中。 减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两条染色体移向哪极是随机的,不同源的染色体间可进行自由组合。29.一个卵原细胞经过减数分裂,只形成一个卵细胞。一个精原细胞经过减数分裂,形成四个精子。30.对于有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞染色体数目的恒定,对于生物的遗传和变异,都是十分重要的。31.对于有性生殖的生物来说,个体发育的起点是受精卵。32.很多双子叶植物成熟种子中无胚乳,是因为在胚和胚乳发育的过程中胚乳被子叶吸收了,营养贮藏在子叶里,供以后种子萌发时所需。单子叶植物一
●生物化学的研究内容以及与分子生物学关系。10分
第一章绪论
一生物化学研究的内容
1生物化学:生物化学(biochemistry)是研究生物机体的化学组成和生命现象中的化学变化规律的一门科学,即研究生命活动化学本质的学科。所以生物化学可以认为就是生命的化学。
生物化学利用化学的原理与方法去探讨生命,是生命科学的基础。它是介于化学、生物学及物理学之间的一门边缘学科。2生物化学研究的主要方面:生物体的物质组成高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质,如维生素、激素、氨基酸、多肽、核苷酸及一些分解产物
物质代谢生物体与其外环境之间的物质交换过程就称为物质代谢或新陈代谢。物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质物质代谢调控,能量代谢几方面的内容。生物分子的结构与功能根据现代生物化学及分子生物学研究还原论的观点,要想了解细胞及亚细胞的结构和功能,必先了解构成细胞及亚细胞的生物分子的结构和功能。因此,研究生物分子的结构和功能之间的关系,代表了现代生物化学与分子生物学发展的方向。
二生物学的发展
静态生物化学阶段
大约从十八世纪中叶到二十世纪初,主要完成了各种生物体化学组成的分析研究,发现了生物体主要由糖、脂、蛋白质和核酸四大类有机物质组成。
动态生物化学阶段
大约从二十世纪初到二十世纪五十年代。此阶段对各种化学物质的代谢途径有了一定的了解。
其中主要的有:1932年,英国科学家Krebs建立了尿素合成的鸟氨酸循环;1937年,Krebs又提出了各种化学物质的中心环节——三羧酸循环的基本代谢途径;1940年,德国科学家Embden和Meyerhof提出了糖酵解代谢途径。
(三、)分子生物学阶段
从1953年至今。以1953年,Watson和Crick提出DNA的双螺旋结构模型为标志,生物化学的发展进入分子生物学阶段。这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。
三生物化学与其他学科的关系
生物化学是介乎生物学与化学的一门边缘科学,它与生物科学的许多分支学科均有密切关系。
首先,它与生理学是特别密切的姊妹学科。例如植物生理学,它是研究植物生命活动原理的一门科学。植物的生命活动包括许多方面,其中有机物代谢是重要的方面,这本身也属于生物化学的内容。因此,在植物生理学的教科书中也包括部分生物化学内容。
生物化学与遗传学也有密切关系,现已知核酸是一切生物遗传信息载体,而遗传信息的表达,则是通过核酸所携带的遗传信息翻译为蛋白质以实现的。因此,核酸和蛋白质的结构、代谢与功能,同时是生物化学与遗传学的内容。
生物化学也与微生物学有关,目前所积累的生物化学知识,有相当部分是用微生物为研究材料获得的,如大肠杆菌是被生物化学广泛应用的材料。
生物化学与分类学也有关系,由于蛋白质在进化上是较少变化的,因此,近代利用某些蛋白质结构的研究,可以作为分类的依据。此外,农业科学、生物技术、食品科学、医药卫生及生态环境等科学,都需要生物化学的基础。
四生物化学的应用与发展
二十一世纪是以信息科学和生命科学为前沿科学的时代。生物化学在生命科学中居于基础地位,也是医学、畜牧、兽医、农学、林学和食品科学等专业必修的基础课。生物化学在生产生活中的应用主要体现在医疗、农业和食品行业等方面。在医学上,人们根据疾病的发病机理以及病原体与人体在代谢和调控上的差异,设计或筛选出各种高效低毒的药物。比如最早的抗生素——璜胺类药物就是竞争性抑制使细菌不能合成叶酸从而死亡。依据免疫学知识人们设计研制出各种疫苗,使人类从传染病中得以幸免。艾滋病疫苗的研制工作也在不断取得进步民以食为天,这说明了农业生产在人类生活中的基础地位。我国是一个人口大国,且人均耕地少,如果不是通过生物技术改良农作物提高产量和质量,那么不要说实现小康,可能连社会稳定都无从谈起。大家可能对转基因这个概念比较陌生,但在当今社会,没有跟转基因产
品打过交道的人可2002年,我国本土生产大豆1541万吨,从美国和阿根廷等国家共进口了1397万吨大豆,进口大豆占我国大豆总消费量50%左右。其中美国占573万吨,剩下是阿根廷和巴西。美国100%转基因,阿根廷98%,巴西至少10%。这说明市面上流通的豆类制品,近50%是转基因作物制造。而这一信息知道的人并不多,但随着认证的进行,这一状况会逐步好转。
现代生命科学技术可以大大加快人类的进化历程并改变某些物种,从而影响到整个自然界的发展历程。科技的每一小步前进都会带来社会的深刻变化。正如网络的出现促成了虚拟社区的形成,而这虚拟的世界却又实实在在地影响着人们的现实生活。总的来说科技的进步给人类带来的更多是利益,生命科学领域中的工作者们正在努力实现使生命更完美的目标。没有疾病的困扰,胎儿在发育之前已对其缺陷基因进行了彻底的修复;不必杀生,人工合成的蛋白质取代了动物肉类;200岁被定为青年,衰老的器官被人工合成的新器官所移植。。。我想这就是生命科学的未来,她将营造出一个健康、繁荣和幸福的生命世界!
第二章生物体内的糖类
糖是自然界中存在的一大类具有广谱化学结构和生物功能的有机化合物。它主要是由绿色植物经光合作用形成的。这类物质主要是由碳、氢、氧所组成,是含多羟基的醛类或酮类化合物。根据水解后产生单糖残基的多少可将糖作如下分类:
单糖:这是一类最简单的多羟基醛或多羟基酮,它不能再进行水解。根据其所含的碳原子数,单糖又可分为丙糖、丁糖、戊糖、己糖、庚糖等。依其带有的基团,又可分为醛糖和酮糖。
寡糖:是由2~10个单糖分子聚合而成的糖,如二糖、三糖、四糖、……、九糖等。
多糖:由多分子单糖及其衍生物所组成,依其组成又可分为两类:同聚多糖:由相同单糖结合而成,如戊聚糖、淀粉、纤维素等。杂聚多糖:由一种以上单糖或其衍生物所组成,如半纤维素、粘多糖等。
第一节单糖及其衍生物
任何单糖的构型都是由甘油醛及二羟丙酮派生的,形成醛糖和酮糖。由于糖的构型有D-构型与L-构型,即凡分子中靠近伯醇(—CH2OH)的仲醇基(—CHOH)中的羟基如在分子的右方者称为D-糖,在左方者称为L-糖,因此又有D-醛糖和L-醛糖、D-酮糖和L-酮糖之分。它们的关系如图1-1、图1-2。
植物体内最重要的单糖有戊糖、己糖和庚糖,现在分别举例说明如下:
一、戊糖
高等植物中有三种重要的戊糖,即D-核糖、D木糖及L-阿拉伯糖。其环状结构式为:
β-D-核糖L-阿拉伯糖D-木糖
D-核糖是所有生活细胞的普遍成分之一,在细胞质中含量最多。核糖是构成遗传物质——核糖核酸的主要成分。如果D-核糖在C2上被还原,则形成2脱氧-D-核糖。脱氧核糖是另一类遗传物质——脱氧核糖核酸的主要成分。
L-阿拉伯糖在植物中分布很广,是粘质、树胶、果胶质与半纤维素的组成成分,在植物体内以结合态存在。
D-木糖(D-xylose)是植物粘质、树胶及半纤维素的组成成分,也以结合态存在于植物体内。
图1-1D-醛糖的关系图
图1-2D-酮糖的关系图
二、己糖(hexose)
高等植物中重要的己醛糖有D-葡萄糖、D-甘露糖、D-半乳糖;重要的己酮糖有D-果糖和D-山梨糖。
葡萄糖(glucose)是植物界分布最广、数量最多的一种单糖,多以D-式存在。葡萄糖在植物的种子、果实中以游离状态存在,它也是许多多糖的组成成分,如蔗糖是由D-葡萄糖与D-果糖结合而成的,淀粉及纤维素都是由D-葡萄糖聚合而成的。
-D-吡喃葡萄糖-D-吡喃葡萄糖
果糖也是自然界中广泛存在的一种单糖。存在于植物的蜜腺、水果及蜂蜜中,是单糖中最甜的糖类。在游离状态时,果糖为-D-吡喃果糖,结合态时为-D-呋喃果糖。
甘露糖(mannose)在植物体内以聚合态存在,如甘露聚糖。它是植物粘质与半纤维的组成成分。花生皮、椰子皮、树胶中含有较多的甘露糖。甘露糖的还原产物——甘露糖醇是柿霜的主要成分。
半乳糖(galactose)在植物体内仅以结合状态存在。乳糖、蜜二糖、棉籽糖、琼脂、树胶、果胶类及粘质等都含有半乳糖。
山梨糖(sorbose)又称清凉茶糖,存在于细菌发酵过的山梨汁中,是合成维生素C的中间产物,在制造维生素C的工艺中占有重要的地位。桃、李、苹果、樱桃等果实中含有山梨糖的还原产物——山梨糖醇。
三、庚糖(heptose)
庚糖虽然在自然界分布较少,但在高等植物中存在。最重要的有D-景天庚酮糖及D-甘露庚酮糖。前者存在于景天科及其他肉质植物的叶子中,故名景天庚酮糖。它以游离状态存在。该糖是光合作用的中间产物,在碳循环中占有重要地位。D-甘露庚酮糖存在于樟梨果实中,也以游离状态存在。它们的线状结构如下:
四、糖的重要衍生物
由于电子显微镜的应用及近代细胞壁化学的研究,自然界中又发现有两种其他的脱氧糖类,它们是细胞壁的成分。一种是L-鼠李糖(L-rhamnose),另一种是6-脱氧-L-甘露糖。
糖醛酸由单糖的伯醇基氧化而得。其中最常见的是葡萄糖醛酸它是脏内的一种解毒剂。半乳糖醛酸存在于果胶中。
糖胺又称氨基糖,即糖分子中的一个羟基为氨基所代替。自然界中存在的糖胺都是己糖胺。常见的是D-葡萄糖胺(D-glucosamine),为甲壳质(几丁质)的主要成分。甲壳质是组成昆虫及甲壳类结构的多糖。D-半乳糖胺则为软骨组成成分软骨酸的水解产物。
第二节寡糖
寡糖的概念是1930年提出的,是指由2~10个单糖分子聚合而成的糖。自然界中存在着大量的寡聚糖,早在1962年就已经发现了584种之多。寡聚糖在植物体内具有贮藏、运输、适应环境变化、抗寒、抗冻、调节酶活性等功能。寡糖中以双糖分布最为普遍,意义也较大。
一、双糖(disaccharides)
双糖是由两个相同的或不同的单糖分子缩合而成的。双糖可以认为是一种糖苷,其中的配基是另外一个单糖分子。在自然界中,仅有三种双糖(蔗糖、乳糖和麦芽糖)以游离状态存在,其他多以结合形式存在(如纤维二糖)。蔗糖在碳水化合物中是最重要的双糖,而麦芽糖和纤维二糖在植物中也很重要,它们是两个重要的多糖——淀粉和纤维素的基本结构单位。
1.蔗糖(sucrose)
蔗糖在植物界分布最广泛,并且在植物的生理功能上也最重要。蔗糖不仅是主要的光合作用产物,而且也是碳水化合物储藏和积累的一种主要形式。在植物体中碳水化合物也以蔗糖形式进行运输。此外,我们日常食用的糖也是蔗糖。它可以大量地由甘蔗或甜菜中得到,在各种水果中也含有较多。
蔗糖是-D-吡喃葡萄糖-D-呋喃果糖苷。它不是还原糖,因为2个还原性的基团都包括在糖苷键中。蔗糖有一个特殊性质,就是极易被酸水解,其水解速度比麦芽糖或乳糖大1000倍。蔗糖水解后产生等量的D-葡萄糖及D-果糖,这个混合物称为转化糖。在高等植物和低等植物中有一种转化酶(invertase),可以使蔗糖水解成葡萄糖和果糖。
2.麦芽糖(maltose)
它大量存在于发芽的谷粒,特别是麦芽中,在自然界中很少以游离状态存在。它是淀粉的组成成分。淀粉在淀粉酶作用下水解可以产生麦芽糖。用大麦淀粉酶水解淀粉,可以得到产率为80%的麦芽糖。
用酸或麦芽糖酶水解麦芽糖只得到D-葡萄糖,麦芽糖酶的作用表明这2个D-葡萄糖是通过第l和第4碳原子连结的,故麦芽糖可以认为是-D-葡萄糖-(l,4)-D-葡萄糖苷。因为有一个醛基是自由的,所以它是还原糖。
3.乳糖(Iactose)
乳糖存在于哺乳动物的乳汁中(牛奶中含乳糖4%~7%)。高等植物花粉管及微生物中也含有少量乳糖。乳糖是由D-葡萄糖和D-半乳糖分子以l,4键连结缩合而成的,乳糖是还原糖。分子结构如下:
4.纤维二糖(cellobiose)
纤维素经过小心水解可以得到纤维二糖,它是由2个葡萄糖通过β-l,4-葡萄糖苷键缩合而成的还原性糖。与麦芽糖不同,它是β-葡萄糖苷。
纤维二糖[β-D-吡喃葡萄糖-D-吡喃葡萄糖苷]
自然界中广泛存在的三糖(trisaccharide)仅有棉籽糖(raffinose),主要存在于棉籽、甜菜及大豆中,水解后产生D-葡萄糖、D-果糖及D-半乳糖。在蔗糖酶作用下,由棉籽糖中分解出果糖而留下蜜二糖;在-半乳糖苷酶作用下,由棉籽糖中分解出半乳糖而留下蔗糖。棉籽糖的分子结构如下:
水苏糖(stachyose)是目前研究得比较清楚的四糖,存在于大豆、豌豆、洋扁豆和羽扇豆种子内,由2个分子半乳糖、1分子-葡萄糖及1个分子-果糖组成。结构如下:
第三节植物的贮藏多糖和结构多糖
多糖(polysaccharides)是分子结构很复杂的碳水化合物,在植物体中占有很大部分。多糖可以分为两大类:一类是构成植物骨架结构的不溶性的多糖,如纤维素、半纤维素等,是构成细胞壁的主要成分;另一类是贮藏的营养物质,如淀粉、菊糖等。
多糖是由许多单糖分子缩合而成的:由一种单糖分子缩合而成的如淀粉、糖原、纤维素等;由二种单糖分子缩合而成的如半乳甘露糖胶、阿拉伯木糖胶等;由数种单糖及非糖物质构成的如果胶物质等。
1.淀粉(starch)
淀粉几乎存在于所有绿色植物的多数组织中。是植物中最重要的贮藏多糖,是禾谷类和豆科种子、马铃薯块茎和甘薯块根的主要成分,它是人类粮食及动物饲料的重要来源。在植物体中,淀粉以淀粉粒状态存在,形状为球形、卵形,随植物种类不同而不同。即使是同种作物,淀粉含量也因品种、气候、土壤等条件变化而有所不同。
淀粉在酸和体内淀粉酶的作用下被降解,其最终水解产物为葡萄糖。这种降解过程是逐步进行的:
淀粉—红色糊精—无色糊精—麦芽糖—葡萄糖
遇碘显
用热水溶解淀粉时,可溶的一部分为直链淀粉;另一部分不能溶解的为支链淀粉。
(1)直链淀粉(amylose)直链淀粉溶于热水,遇碘液呈紫蓝色,在620~680nm间呈最大光吸收。相对分子质量约在10000~50000之间。每个直链淀粉分子只含有一个还原性端基和一个非还原性端基,所以它是一条长而不分枝的链。直链淀粉是由l,4糖苷键连结的-葡萄糖残基组成的,当它被淀粉酶水解时,便产生大量的麦芽糖,所以直链淀粉是由许多重复的麦芽糖单位组成的,分子结构如下:
(2)支键淀粉(amylopectin)支链淀粉的相对分子质量非常之大,在50000一1000000之间。端基分析表明,每24~30个葡萄糖单位含有一个端基,因而它必定具有支链的结构,每条直链都是-l,4键连结的链,支链之间由-l,6键连结,可见支链淀粉分支点的葡萄糖残基不仅连接在C4上,而且连接在C6上,-1,6-糖苷键占5%~6%。支链淀粉的分支长度平均为24~30个葡萄糖残基。遇碘显紫色或紫红色,在530~555nm呈现最大光吸收。
一般淀粉都含有直链淀粉和支链淀粉。但在不同植物中,直链淀粉和支链淀粉所占的比例不同,如表1-1。即使是同一作物,品种不同二者的比例也不同,如糯玉米中几乎不含直链淀粉,全为支链淀粉。
表1-1不同植物的淀粉中直链淀粉和支链淀粉的比例
淀粉直链淀粉支链淀粉
马铃薯淀粉
稻米淀粉19~20
21~23
1778~81
77~79
2.糖原(glycogen)
糖原是动物细胞中的主要多糖,是葡萄糖极容易利用的储藏形式。其作用与淀粉在植物中的作用一样,故有“动物淀粉”之称。糖原中的大部分葡萄糖残基是以-1,4-糖苷键连结的,分支是以-1,6-糖苷键结合的,大约每10个残基中有一个键。糖原端基含量占9%而支链淀粉为4%,故糖原的分支程度比支链淀粉约高1倍多。糖原的相对分子质量很高,约为5000000。它与碘作用显棕红色,在430~490nm下呈最大光吸收。
图1-3糖原的分子结构
3.菊糖(inu1in)
菊糖是多聚果糖,菊糖中的果糖一律以D-呋喃糖的形式存在。菊科植物如菊芋、大丽花的根部,蒲公英、橡胶草等都含有菊糖,代替了一般植物的淀粉,因而也称为菊粉。菊糖分子中含有约30个l,2-糖苷键连接的果糖残基。菊糖分子中除含果糖外,还含有葡萄糖。葡萄糖可出现在链端,也可以出现在链中。
菊糖不溶于冷水而溶于热水,因此,可以用热水提取,然后在低温(如0℃)下沉淀出来。菊糖具有还原性。淀粉酶不能水解菊糖,因此人和动物不能消化它。蔗糖酶可以以极慢的速度水解菊糖。真菌如青霉菌(Penicilliumglaucum)、酵母及蜗牛中含有菊糖酶,可以使菊糖水解。
4.纤维素(cellulose)
纤维素是最丰富的有机化合物,是植物中最广泛的骨架多糖,植物细胞壁和木材差不多有一半是由纤维素组成的。棉花是较纯的纤维素,它含纤维素高于90%。通常纤维素、半纤维素及木质素总是同时存在于植物细胞壁中。
植物纤维素不是均一的一种物质,粗纤维可以分为-纤维素、-纤维素和γ-纤维素三种。-纤维素不溶于17.5%NaOH,它不是纯粹的纤维素,因为在其中含有其他聚糖(如甘露聚糖);-纤维素溶于17.5%NaOH,加酸中和后沉淀出来;γ-纤维素溶于碱而加酸不沉淀。这种差别大概是由于纤维素结构单位的结合程度和形状的不同。
实验证明,纤维素不溶于水,相对分子质量在50000~400000,每分子纤维素含有300~2500个葡萄糖残基。葡萄糖分子以-l,4-糖苷键连接而成。在酸的作用下完全水解纤维素的产物是-葡萄糖,部分水解时产生纤维二糖,说明纤维二糖是构成纤维素的基本单位。水解充分甲基化的纤维素则产生大量的2,3,6-三甲氧基葡萄糖,表明纤维素的分子没有分枝。其分子结构如下:
二、酰甘油的类型
三酰甘油有许多不同的类型,主要是由它们所含脂肪酸的情况决定的。三酰甘油的通式为:
如果三个脂肪酸是相同的,称为简单三酰甘油,具体命名时称为某某脂酰甘油,如三硬脂酰甘油、三软脂酰甘油、三油脂酰甘油等。如果含有两个或三个不同脂肪酸的三酰甘油称为混合三酰甘油,如一软脂酰二硬脂酰甘油。在混合三酰甘油中各脂酰基由于位置不同,又有不同的异构体。
多数天然油脂都是简单三酰甘油和混和三酰甘油的极其复杂的混合物。到目前为止,还没有发现在天然油脂中脂肪酸分布的规律。
三、三酰甘油的理化性质
1.溶解度
三酰甘油不溶于水,也没有形成高度分散的倾向。二酰甘油和单脂酰甘油则不同,由于它们有游离羟基,故有形成高度分散态的倾向,其形成的小微粒称为微团,它们常用于食品工业,使食物更易均匀,便于加工,且二者都可以被机体利用。
三酰甘油的熔点是由其脂肪酸的组成决定的,一般随饱和脂肪酸的数目和链长的增加而升高。如三软脂酰甘油和三硬脂酰甘油在常温下为固态,三油酰甘油和三亚油酰甘油在常温下为液态。猪的脂肪中油酸占50%,猪油固化点为30.5℃。人脂肪中油酸占70%,人脂固化点为15℃。植物油中含大量的不饱和脂肪酸,因此呈液态。
3.皂化和皂化值
当将脂酰甘油与酸或碱共煮或经脂酶作用时,都可发生水解。酸水解可逆;碱水解,由于脂肪酸羧基全部处于解离状态,即成为负离子,因而没有和甘油作用的可能性,故碱水解不可逆。当用碱水解三酰甘油时,生成物之一为脂肪酸的盐类,这就是日常所用的肥皂,所以脂类的碱水解反应一般称为皂化反应。完全皂化1g油或脂所消耗的氢氧化钾毫克数称为皂化值,用以评估油脂质量,并计算该油脂相对分子质量。
4.酸败和酸值
油脂在空气中暴露过久即产生难闻的臭味,这种现象称为“酸败”。其化学本质是油脂水解放出游离的脂肪酸,后者再氧化成醛或酮,低分子的脂肪酸的氧化产物都有臭味。脂肪分解酶或称脂酶可加速此反应。油脂暴露在日光下可加速此反应。中和1g油脂中的游离脂肪酸所消耗的氢氧化钾毫克数称为酸值。酸败的程度一般用酸值来表示。不饱和脂肪酸氧化后所形成的醛或酮可聚合成胶状的化合物。桐油等可用作油漆即是根据此原理。
5.氢化和卤化
油脂中的不饱和键可以在催化剂的作用下发生氢化反应。工业上常用Ni粉等催化氢化使液状的植物油适当氢化成固态三酰甘油酯,这称为人造奶油,便于运输。氢化可防止酸败作用。
油脂中的不饱和键可与卤素发生加成作用,生成卤代脂肪酸,这一作用称为卤化作用。
100g油脂所能吸收的碘的克数称为碘值,在实际碘值测定中,多用溴化碘或氯化碘为卤化试剂。
6.乙酰化值
含羟基的脂酰化合物,羟基含量可通过与乙酸酐或其他酰化剂反应生成乙酰化酯或相应酰化酯而测得。乙酰化值指1g乙酰化的油脂所分解出的乙酸用氢氧化钾中和时所需氢氧化钾的毫克数。
第二节其它酰基甘油类
一、烷基醚脂酰甘油
它含有两个脂肪酸分子和一个长的烷基或烯基链分别与甘油分子以酯键相连。例如烷基醚键二脂酰甘油和、-烯基醚二脂酰甘油,其结构如下:
烷基醚键二脂酰甘油、-烯基醚二脂酰甘油
这种脂类不易与甘油三酯分开,因此发现较晚。用弱碱或酶促水解,它们则形成甘油醚。例如,鲛肝醇和鲨肝醇实际上都是甘油醚,其结构如下:
二、糖基脂酰甘油
糖基与甘油分子第三个羟基以糖果苷键相连,甘油另两个羟基与脂肪酸以酯键相连。最普通的例子是在高等植物和脊椎动物神经组织中发现的单半乳糖基二脂酰甘油,其结构如下:
3.磷酸甘油酯的命名
如果将甘油C1或C3分别用脂肪酸或磷酸酯化,C2则成为一个不对称C原子,于是形成两个互为对映体的异构物。天然存在的甘油磷脂都属L-构型。结构如下:
D-构型L-构型
1967年国际理论和应用化学联合会及国际生物化学联合会的生物化学命名委员会建议采用下列命名原则:
将甘油的三个碳原子分别标号为1,2,3。
用投影式表示,C2上羟基一定要放在C2的左边。这种编号称为立体专一编号,用sn表示,写在化合物名称前面。根据这一命名原则,磷酸甘油和磷脂酸命名如下:
sn-甘油-1-磷酸sn-甘油-3-磷酸
sn-二脂酰甘油-1-磷酸sn-二脂酰甘油-3-磷酸
三、非皂化脂质
非皂化脂质的特点是它们都不含脂肪酸,因此不能为碱所皂化。它们在组织和细胞内含量虽少,但却包括许多有重要生物功能的物质,如维生素和激素等。
谁提供一下2017年生物化学自考的考试内容啊?谢谢
1、从考试本身来说,自考只有一种方式,就是当地自考办组织,选择主考院校的专业,考试通过,完成论文和答辩,申请毕业。2、从学习方式来说,目前有两种。一种是自学,另一种是参加自考助学培训。前者适合有时间、精力,文化基础和自学能力相对较强的学生,因为完全靠自己来学习、做笔记、总结;后者要注意,选择自考助学培训应该选有正规资质的培训机构,培训机构会组织教学、复习和参加考试。3、从自考本身的类别上看,有大自考、小自考之分。大自考和小自考所获得的毕业证都是国家承认,并且合法有效的,盖章也是自考办和高校两个章;关键的区别在于专业。大自考执行的是招考指南当中发布的考试专业,专业的部分考试科目国家统一命题考试,因此不同的省份根据考生工作生活的实际需要,有时接近的专业可以选择转考;小自考主要是高校自行开设的专业,是招考指南当中没有的专业,也由高校自主命题,所以不像大自考那么自由。
进化生物学专业知识点总结
以上就是今天分享关于自考生物化学重点知识归纳,食品生物化学重点知识归纳的全部内容,更多自考历年真题及答案,自考视频网课,自考重点复习资料,可以咨询在线客服或者点这里{自考资料网}!